
  

 APPLICATION NOTES 

Page 1 
 

info@IQDfrequencyproducts.com          www.IQDfrequencyproducts.com    
UK Office: +44 (0) 1460 270200             US Office: +1 760668 8935 

IQD Frequency Products Ltd, Station Road, Crewkerne, Somerset TA18 8AR UK 

 

TECHNICAL NOTE 35 

An Overview of Oscillator Jitter 
1. Introduction 

A basic measure of an oscillators’ performance is 
its frequency stability (or instability depending on 
one’s point of view). In the long term (timescales of 
days or years), we refer to frequency changes as 
ageing. On moderate timescales (seconds), the 
stability of an oscillator is often characterized in 
terms of its Allan variance [1]. Oh short timescales 
(usually less than one second), frequency stability 
is often characterized in terms of the fluctuations 
of the phase of the signal (phase noise) or the 
fluctuations in timings of its transitions or the 
periods of its cycles (jitter). 

In this note, we provide an overview of timing, 
period, and cycle-to-cycle jitter in oscillators. Our 
discussion is brief, but should be enough to 
introduce most readers to the basic ideas in the 
subject. For further discussion of these topics, we 
refer the reader to references [2-4]. Further, for an 
overview of Statek’s measurement method, we 
refer the reader to reference [5]. 

In Sec. 2, we discuss the basic concepts of timing 
jitter, period jitter, and cycle-to-cycle jitter. In Sec.3 
we revisit these concepts taking into account some 
measurement issues. In Sec.4, we discuss the 
analysis of jitter, in particular its measures, random 
and non-random jitter, it sources, and the units 
used to express jitter. In Sec. 5, we discuss jitter in 
quartz crystal oscillators. In Sec. 6, we discuss 
system induced jitter. Lastly, in Sec.7, we derive 
some simple relationships between the various 
jitter types that hold in the case that the jitter 
timings are uncorrelated with one another. 

 

 

 

2. Jitter: Basic Concepts 

 In this section, we present the basic concepts 
without regard to how measurements are made. 
While somewhat idealistic, this provides clarity that 
would otherwise be blurred. In Sec. 3, we revisit 
these ideas once again, this time making some 
consideration for practical measurements. 

Consider a nearly periodic signal whose frequency 
varies about some nominal value υ0. Roughly 
speaking, jitter refers to the fast changes in the 
frequency of this signal. Slow frequency variations, 
such as that due to temperature changes to even 
ageing are referred to as wander and are not of 
interest – they are not jitter. Although definitions 
vary depending on the application, frequency 
variations slower than 10 Hz are considered 
wander and those faster than this are considered 
jitter. So, let us suppose that our signal has no 
wander. (In Sec. 3, we discuss how we relax this 
requirement in practice). 

We are interested in the sequences of the times at 
which our signal makes transitions. For example, if 
this is a square-wave oscillator, with the voltage 
swinging between ground and the supply voltage 
VDD, we can consider the times at which the output 
voltage rises through the mid-point voltage 
1 

2
𝑉𝐷𝐷 . 𝐿𝑖𝑘𝑒𝑤𝑖𝑠𝑒, 𝑖𝑓 𝑡ℎ𝑖𝑠 𝑖𝑠 𝑎𝑛 𝑎𝑐 −

𝑐𝑜𝑢𝑝𝑙𝑒𝑑 𝑠𝑖𝑛𝑒 − 𝑤𝑎𝑣𝑒 𝑜𝑢𝑡𝑝𝑢𝑡 (and hence has zero 
mean), we can consider the times at which the 
voltage rises through the ground voltage. 

So, for such a signal, we construct the increasing 
sequence of times tk for k = 0…N representing the 
times at which our signal makes a crossing. 
Viewing pit signal as a clock, we can think of these 
as being the times at which our clock “ticks”. Were 
out signal exactly periodic with period τ = 1/ υ0, we 
would have tk = Ƭk where 

                                 Ƭk = t0 + kτ .                                      (1) 

However, because of jitter this won’t be exactly the 
case. 



  

 APPLICATION NOTES 

Page 2 
 

info@IQDfrequencyproducts.com          www.IQDfrequencyproducts.com    
UK Office: +44 (0) 1460 270200             US Office: +1 760668 8935 

IQD Frequency Products Ltd, Station Road, Crewkerne, Somerset TA18 8AR UK 

 

 

2.1 Timing jitter, TIE, phase jitter 

In some systems, is it important to keep two 
signals synchronized so that they are phase locked. 
As discussed in Sec. 3, this is normally done using a 
phase-locked loop (PLL) so that one oscillator 
follows the other. However, while a PLL can adjust 
for the wander of the oscillators, it cannot adjust 
for fast frequency changes, i.e., jitter. In this case, 
we want a measure of how much the two signals 
may become out-of-step or out-of-phase. 

Timing jitter measures the lateness or earliness of 
the transitions (ticks) of our signal at any given time 
in its history. That is, timing jitter is the difference 
Ϳk in time between when a transition occur tk and 
the time it should have occurred Ƭk, i.e., 

                                  Ϳk = tk – Ƭk ,                                 (2) 

where Ƭk is defined by equation (1). 

Timing jitter is commonly referred to as time-
interval error (TIE) as this is just the error in the 
transition times of our signal. Further, at least for 
nearly sinusoidal signals, the root-mean-square  
jitter Ϳrms is related to the root-mean-square phase 
fluctuations (phase noise) φrms as follows. 

                           Ϳrms = 1/2π φrmsτ ,                            (3) 

where 

                         φ𝑟𝑚𝑠 =  √∫ 𝑆φ(𝑓)𝑑𝑓                       (4) 

And Sφ(f) is the spectral density of phase 
fluctuations (which is related to the conventional 
single-side band phase-noise spectrum, ℒ(f) by 
ℒ(f)=1/2S(f) [1]. 

 

 

Because of this, timing jitter is often referred to as 
phase jitter (often limited to a frequency band of 
phase fluctuations), and jitter (of all types) is often 
expressed as a phase angle (φk = 2π Ϳk / τ), or as 
its fraction of a full period ( Ϳk / τ). 

 

 

2.2 Period Jitter 

Instead of looking at the effects of frequency 
variations in the long-term, we can look at its 
effects in the short-term. In particular, we look at 
periods Pk of the individual cycles and study how 
they are distributed. That is, we study the sequence 

                                    Pk = tk+1 – tk ,                           (5) 

For k = 0…N-1. 

Period jitter refers to the distribution of Pk. Where 
the signal perfectly periodic with period τ, then we 
would have Pk = τ for all k. However, we are more 
interested in the difference of these periods from 
the nominal period τ. So, instead we consider 

                                     jk = Pk – τ .                                 (6) 

We refer to jk as the period jitter of the kth cycle. 
Notice that jk has zero mean (in the long term). 
Further, note that 

                                    jk = Ϳk+1 – Ϳk                                                     (7) 

That is, period jitter is the first-difference of the 
timing jitter. 

2.3 Cycle-to-cycle Jitter 

Next, we consider how periods change from one 
cycle to the next. That is, we consider the sequence 
ck given by 

                                 ck = Pk+1 – Pk                                                  (8) 

for k = 0…N-2. 

 

Notice that 

                                   ck+ = jk+1 – jk ,                            (9) 

i.e., cycle-to-cycle jitter is the first-difference of the 
period jitter (and is the second-difference of the 
timing jitter). See Figure 1. 

This type of jitter measures very fast changes in the 
period. In fact, it measures changes on timescales 
of the period itself. For example, if the period were 
to vary slowly (compared to itself), we would have  
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a wide spread in the period jitter jk, but a much 
narrower spread in the cycle-to-cycle jitter ck.  

ck = Pk+1 – Pk 

 
Figure 1 – Three consecutive rising edges 
bounding two consecutive cycles. The cycle-to-
cycle jitter is the change in the period from one 
cycle to the next. 

 

2.4 Summary 

Before moving on, it is worth summarizing the 
relationships between various quantities discussed 
in this section. Define ∆ to be the first difference 
operator, so that for a sequence qk, ∆qk is the 
sequence given by 

                                  ∆qk = qk+1 – qk .                         (10) 

 

 

Then , as noted above, we have the following 
simple relationships 

                                      
(11) 

 

 

That is Pk = ∆tk , ck = ∆Pk , jk = ∆Ϳk , and ck = ∆jk. Further, 
we arrive at Ϳk by subtracting off a linear expression 
from tk, since we are interested in its variations 
about this exact linearity. Likewise, we arrive at jk 
by subtracting off the nominal period Pk since we 
are interested in its variations about this nominal 
value. Lastly, as ck naturally varies about zero, we 
did not need a modified version of it to study its 
variations. 

 

 

3. Jitter: Measurement Issues 

In Sec. 2, we presented the basic concepts defining 
various types of jitter. While the ideas ate rather 
straightforward, making actual measurements are 
rather involved.  

In our definition of timing jitter, we compared our 
signal of interest to its idealized counterpart: an 
oscillator whose period was perfectly constant. 
Further, we did not worry about our oscillator 
wandering away in frequency (or phase) from its 
ideal. How do we accomplish this in practice? 

One method for accomplishing these tasks is to use 
a reference signal. Ideally the reference signal is 
perfect (its frequency is constant and hence has no 
jitter), but in practice this is not the case. So, in the 
end we actually measure the combined jitter of 
both signals. Because of this, the jitter of  the 
reference signal must be sufficiently low that is 
contribution is either ignorable or acceptable. 

So, suppose we have such a reference signal with 
the same nominal frequency as our signal of 
interest. In practice, even if both oscillators have 
the same nominal frequency to very tight 
tolerances, the two won’t be exactly the same. To 
eliminate any remaining difference we require that 
one of the two oscillators have some degree of 
frequency control (i.e., it is a VCXO). We then phase 
lock the controllable oscillator to the other with a 
long-time loop constant. This keeps their long-
term frequencies the same (eliminating wander) 
whilst still allowing for short-term frequency 
variations. 

Actually, what we’ve described allows both 
oscillators to wander in frequency in tandem. To 
keep both fixed, we would use a high-stability 
reference oscillator(e.g., an OCXO, perhaps locked 
to an external reference) and we would phase-lock 
the oscillator under study to this reference. 

We are again interested in the sequence tk of times 
at which our signal makes transitions. And likewise, 
we are interested in the sequence of times Tk at 
which our reference oscillators make transitions. 
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For timing jitter, we now compare our signal to the 
reference signal. So, out measured timing jitter Jk is 
the difference in time between when a transition 
occurs and the time it should have occurred as 
determined by the reference signal, i.e., 

                               Jk = tk – Tk .                                  (12) 

So, our measured timing jitter Jk is related to the 
ideal timing jitter Ϳk by 

                              Jk = tk – Tk 

                                  = (tk –Ƭk) – (Tk - Ƭk)                 (13) 

                                  = Ϳk – (Tk - Ƭk) 

 

Or, dropping the subscripts, we have 

                                   Jsignal = Ϳsignal - Ϳreference .                  (14) 

That is, the measured timing jitter is different from 
the ideal timing jitter by the amount of jitter in our 
reference signal. As a direct consequence of this, if 
the jitter of our signal under study and the 
reference are uncorrelated, which should be the 
case, then 

               〈𝘑𝑠𝑖𝑔𝑛𝑎𝑙
2 〉 =  〈Ϳ𝑠𝑖𝑔𝑛𝑎𝑙

2 〉 +  〈Ϳ𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
2 〉 ,        (15) 

i.e., the measured mean-square jitter is larger than 
its actual mean-square jitter by the reference 
signal’s mean-square jitter. 

Instead of using a physical reference clock hat 
follows the clock under study, the wander in 
timings tk can be removed using numerical 
methods.  

The idea is that a “software clock” with timings Tk 
is created in such a way that it follows the wander 
in tk. In this way, the difference tk – Tk is the jitter 
(fast frequency changes) in our clock. Whether this 
approach is viable depends on our ability to 
measure the timings tk. 

For period and cycle-to-cycle jitter, while we do not 
need a reference signal, we still must measure the 
timings of transitions. These timings won’t be 
known exactly because of the jitter in the clock 
used to assign these times and timing errors due to  

 

voltage noise in the signal. Because of these errors, 
the measured jitter will be larger than the actual 
jitter of the signal. As always, whether this is 
acceptable depends on the requirements of the 
measurement. 

4. Analyzing Jitter 

At this point, we have three types of jitter, each 
described by a sequence of values (all having the 
units of time). Normally, we would like to 
summarise this sequence by a single number 
characterizing its distribution of values. 

4.1 Quantifying Jitter 

Usually the first step in doing this is to produce a 
histogram of jitter values. If this distribution is well-
described by a Gaussian distribution (as is normally 
the case for random sources of jitter), then we can 
describe this distribution by its width, e.g., the root-
mean-square jitter σ. 

However, in general a worst-case characterization 
of the jitter is required, i.e. the peak-to-peak width 
of the distribution. While for Gaussian jitter this 
peak-to-peak width is unbounded in principle, we 
can take a multiple of the root-mean-square jitter 
to be sufficiently large that excursions beyond this 
are sufficiently rare to be allowable. A common 
choice is to take the peak-to-peak jitter to be 14σ.  

For systems with bounded jitter, the worst-case 
characterization is straightforward. We simply take 
the peak-to-peak spread in the values. 

For distributions that are neither Gaussian nor 
bounded (e.g., those having both bounded sources 
and Gaussian sources), then a modified version of 
the Gaussian procedure above is required. Here we 
look as both tails of the jitter distribution and go out 
far enough (e.g., using a “tail-fit” method) so that 
excursions beyond this are sufficiently rare to be 
allowable.  
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4.2 Random and non-random sources 

When analyzing the jitter present in a signal, it is 
useful to divide the sources into two types. That 
due to random sources (e.g., noise) and that due to 
non-random (deterministic or systematic) sources. 

Random jitter, also known as unbounded jitter or 
Gaussian jitter, is characterized by having a 
Gaussian distribution. The source for this type of 
jitter is usually the random noise within the system, 
and so eliminating these sources of jitter can be 
difficult. 

Non-random jitter is usually characterized by a 
bounded non-Gaussian distribution. The source for 
this type of jitter is usually identifiable by analyzing 
the jitter spectrum. For example, the frequency of 
an oscillator might be modulated due to cross-talk 
from an adjacent signal trace or by ripples in the 
voltage supplying the oscillator. Since these 
sources are identifiable, steps can be taken to 
eliminate them. 

4.3 Some Units for Jitter 

As defined here, all three types of jitter naturally 
have units of time. For example, for systems with 
frequencies in the megahertz or low gigahertz 
range (where the period roughly a nanosecond to 
microsecond), the jitter is usually expressed in 
picoseconds. 

However, sometimes it is useful to express the 
jitter as its fraction of a nominal period. For 
example, a jitter of 2 ps for a 100 MHz (10ns) signal 
would be 0.02%. This is also commonly written as 
0.0002 UI, where UI stands for unit-interval. 

Another convention is to express the jitter as an 
angular measure. As has been discussed, this 
makes sense for timing jitter as this can be related 
to the phase variations. 

5. Jitter in Quartz Crystal Oscillators 

For well-designed quartz crystal oscillator with 
output frequencies at the frequency of oscillation 
of the crystal, the jitter should arise solely from 
random noise sources. Further, the root-mean- 

 

square period and cycle-to-cycle jitter are typically 
on the order of a few picoseconds (if not less). The 
same holds true for oscillators whose output is the 
binary divided output1 of a quartz crystal oscillator. 

However, the jitter can be much larger in 
manyquartz-crystal based programmable 
oscillators. Such oscillators use frequency 
synthesis techniques (e.g., phase-locked loops) 
that have period and cycle-to-cycle jitter on the 
order of 10 ps to 100 ps (rms).  

Timing jitter (phase jitter) is often quoted over a 
given frequency band (e.g., 12 kHz to 20 MHz for 
oscillators above 100 MHz) and calculated from the 
measured phase noise using equations (3) and (4). 
Because of this, timing jitter is commonly quite a bit 
lower than period and cycle-to-cycle jitter, e.g., less 
than 1 ps. 

6. System Induced Jitter 

Be aware that when installed into a complex 
system the jitter seen in the output signal of an 
oscillator can be higher than its intrinsic jitter. For 
example, ripples in the power supply voltage can 
modulate the oscillator’s frequency. If jitter 
performance is critical, take into account the 
effects of the other system components on the 
oscillator and take steps to minimize these effects, 
e.g., shielding the oscillator from electromagnetic 
interference and placing a simple RC-filter in its 
power supply line. 

7. Jitter Relationships 

As a final thought, we use the definitions herein to 
explain why sometimes the measured root-mean- 
square cycle-to-cycle jitter is very nearly equal to 
the √3 times the measured root-mean-square 
period jitter. In particular, we show that this is the 
case when the jitter timings Jk are uncorrelated 
with one another. 
 

1By binary divided output we mean that the output frequency is 
2-n times the internal oscillator frequency, for some integer n>0 
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Denote the average value a series xk by 〈𝑥𝑘〉 . 
Strictly speaking, we should instead write 
something like 〈𝑥〉  since the average does not 
depend on k, but as we’ll see, it is useful for keeping 
track of the index we are averaging over. 

If our dataset is infinite, we can exclude a finite 
number of members without changing the average 
value. As a consequence, 〈𝑥𝑘+𝑛〉 =  〈𝑥𝑘〉 for n ≥ 0, 
since offsetting the index has the property of 
excluding the first n members from the average 
and hence has no effect on the average. In the case 
of a finite dataset, we can make a similar argument 
that excluding a small number of members make 
little difference to the average. For simplicity, we 
argue in the case of an infinite dataset. 

Without loss in generality, suppose that our 
oscillator is tracking the ideal clock in the long term 
in the sense that 

                                    〈Ϳ𝑘〉 = 0 .                                     (16) 

If this is not the case, we can remove this 
requirement by arguing in terms of  Ϳ𝑘

′ =  Ϳ𝑘 −  〈Ϳ𝑘〉 
instead of Ϳk . (Note that 〈Ϳ𝑘

′ 〉 = 0 .) 

Now suppose that the jitter timings Ϳk are 
uncorrelated (independent) in the sense that the 
average of this sequence multiplied with an offset 
of itself, i.e., 〈Ϳ𝑘+𝑛Ϳ𝑘〉 satisfies 

                 〈Ϳ𝑘+𝑛Ϳ𝑘〉 =  〈Ϳ𝑘+𝑛〉〈Ϳ𝑘〉, for n > 0            (17) 

where the average in over k. Then using equation 
(16), it follows that 

                         〈Ϳ𝑘+𝑛Ϳ𝑘〉 = 0 , for n > 0 .                 (18) 

 

With this, we have 

〈𝑗𝑘
2〉 =  〈(Ϳ𝑘+1 − Ϳ𝑘)2〉 

                                    =  〈Ϳ𝑘+1
2 − 2Ϳ𝑘+1Ϳ𝑘 + Ϳ𝑘

2  〉     (19) 

                                    =  〈Ϳ𝑘+1
2 〉 +  〈Ϳ𝑘

2〉 
                                    = 2〈Ϳ𝑘

2〉 

 

 

 

In the third step, we used equation (18) and in the 
fourth we used the fact that offsetting the index 
has the property of excluding only the first member 
from the average and hence has no effect on the 
average. 

Likewise 

〈𝑐𝑘
2〉 =  〈(j𝑘+1 −  j𝑘)2〉 

                                    =  〈(Ϳ𝑘+2 − 2Ϳ𝑘+1 + Ϳ𝑘)2〉   (20) 

                                    =  〈Ϳ𝑘+2
2 〉 +  4〈Ϳ𝑘+1

2 〉 + 〈Ϳ𝑘
2〉 

                                    = 6〈Ϳ𝑘
2〉 

In the third step, we again used equation (18), and 
in the fourth we again used the fact that offsetting 
the index does not change the average. 

Combining equations (19) and (20), we have  

                                 〈𝑐𝑘
2〉 = 3〈𝑗𝑘

2〉                                      (21)  

 So, under these circumstances, the root-mean-
square cycle-to-cycle jitter is equal to 
√3 𝑡𝑖𝑚𝑒𝑠 𝑡ℎ𝑒 𝑟𝑜𝑜𝑡 − 𝑚𝑒𝑎𝑛 −
𝑠𝑞𝑢𝑎𝑟𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑗𝑖𝑡𝑡𝑒𝑟 𝑢𝑠𝑖𝑛𝑔  

 
Lastly, for case considered, the measured root-
mean-square period jitter allows us to calculate the 
root-mean-square timing jitter using 

                               Ϳ𝑟𝑚𝑠 =  
1

√2
𝑗𝑟𝑚𝑠                                  (23) 

which follows from equation (19). 
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