
  

 APPLICATION NOTES 

Page 1 
 

info@IQDfrequencyproducts.com          www.IQDfrequencyproducts.com    
UK Office: +44 (0) 1460 270200             US Office: +1 760668 8935 

IQD Frequency Products Ltd, Station Road, Crewkerne, Somerset TA18 8AR UK 

 

TECHNICAL NOTE 30 

 

Design Guidelines for 
Quartz Crystal Oscillators 

Introduction 

A CMOS Pierce Oscillator circuit is well known and is 
widely used for its excellent frequency stability and the 
wide range of frequencies over which  they can be used. 
They are ideal for small, low current and low voltage 
battery operated portable products especially for low 
frequency applications. [1,2] When designing with 
miniaturized quartz crystals, careful consideration must 
be given to the frequency, gain and crystal drive  level. 

In this paper, the design equations used in a typical 
crystal controlled Pierce Oscillator circuit design are 
derived from a closed loop and phase analysis. The 
frequency, gain and crystal drive current equations are 
derived from this method. 

Basic Crystal Oscillator 

The basic quartz crystal CMOS Pierce Oscillator circuit 
configuration is shown on Figure 1. The crystal oscillator 
circuit consists of an amplifying section and a feedback 
network. For oscillation to occur, the Barkhausen criteria 
must be met: 

a) The loop gain must be equal to or greater than 
one; and 

b) The phase shift around the loop must be equal to 
an integral multiple of 2𝜋. 

The CMOS inverter provides the amplification and the 
two capacitors, 𝐶𝐷 and 𝐶𝐺, and the crystal work as the 
feedback network. 

 

 

 

 

 𝑅𝐴 stabilizes the output voltage of the amplifier and is 
used to reduce the crystal drive level. 

 
 
 

 
Figure 1 – Basic Pierce Oscillator Circuit 

Crystal Characteristics 

In order to analyse the quartz crystal oscillator, we must 
first understand the crystal itself. Figure 2 shows the 
electrical equivalent circuit of a quartz crystal. The 𝐿1, 𝐶1 
and 𝑅1  are generally referred to as the electrical 
equivalent of the mechanical parameters; inertia, 
restoring force and friction, respectively. These 
parameters can be measured using a crystal impedance 
meter or a network analyser. 𝐶0 is the shunt capacitance 
between terminals and the sum of the electrode 
capacitance of the crystal and package capacitance. 

 

 
𝑅1  - Motional Resistance, 𝐿1 - Motional Inductance  
𝐶1  - Motional Capacitance, 𝐶0 - Shunt Capacitance 
Figure 2 – Crystal Electrical Equivalent Circuit 
 
This equivalent circuit can effectively be simplified as a 
resistance (𝑅𝑒) in series with a reactance (𝑋𝑒)  at a 
frequency 𝑓 as shown in Figure 3. 

 
 

Figure 3 – Effective Electrical Circuit of a Quartz Crystal 
 

 

 

V1 
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𝑅𝑒(𝑓) and 𝑋𝑒(𝑓) as a function of frequency are as follows: 

     𝑅𝑒(f) =
𝑅1

(
𝑅1
𝑋0

)
2
+ (

𝑋𝑚
𝑋0

−1)
2                             (1) 

 

     𝑋𝑒(f) =
𝑋𝑚(1 − 

𝑋𝑚
𝑋0

 −
𝑅1

2

 𝑋𝑚𝑋0
)

(
𝑅1
𝑋0

)
2
+ (

𝑋𝑚
𝑋0

−1)
2                      (2) 

Where 

                                𝑋0 =
1

𝜔𝐶0
                             (3) 

 𝑋𝑚 = ω𝐿1 − 
1

ω𝐶1
 

 
The series resonant frequency of the crystal is defined as: 

               𝑓𝑠 =
1

2𝜋√𝐿1𝐶1
                                         (4) 

                𝜔𝑠 =
1

√𝐿1𝐶1
 

The quality factor 𝑄 is defined as: 

         𝑄 = 
𝜔𝑠𝐿1

𝑅1
= 

1

𝜔𝑠𝑅1𝐶1
                             (5) 

From equation (1) and (2), an example of the magnitude of 
𝑅𝑒 and 𝑋𝑒 as a function of frequency are shown in Figures 
4 and 5 respectively for 𝑓𝑆  = 32.768kHz, 𝐶1 = 2.4fF,  and  
𝑅1 = 28kΩ . The frequency is expressed in terms of part per 
million (ppm) above the series resonant frequency (𝑓𝑆 ) of 
the crystal (f/f ). These two graphs are very useful in the 
analysis of the crystal oscillator. 

Figure 4 – 𝑅𝑒(Ω) vs. f/f (ppm) 

 

Figure 5 – 𝑋𝑒(Ω) vs. f/f (ppm) 

Crystal Oscillator Design 

The AC equivalent circuit of the amplifier and feedback 
network of a pierce oscillator is shown in Figure 6. For the 
following analysis, 𝑅𝐴  is omitted and will be reintroduced 

later. 
 

Figure 6 – Pierce Oscillator AC Equivalent Circuit 

 𝐼0 = 
𝑉

𝑅0

 , 𝐼1 = 
𝑉

𝑋𝐷
 

𝐼𝐷 = 𝑔𝑚𝑋𝐺𝐼𝑋 , 𝑋𝐷 = 
1

𝜔𝐶𝐷

=  
1

2𝜋𝑓𝐶𝐷
 

𝑋𝐺 = 
1

𝜔𝐶𝐺

= 
1

2𝜋𝑓𝐶𝐺
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The phase and amplitude relationship of the oscillator 
voltage, current and impedance are shown in Figures 7 and 
8. Assume that the oscillator is oscillating at a frequency 𝑓 
and the amplifier output current 𝐼𝐷is 180° out of phase with 
the oscillator input voltage 𝑉1. 
 

𝑉𝑋𝑒
′ = 𝑉𝑋𝑒

− 𝑉1 

𝑉 =  √(𝑉𝑋𝑒
− 𝑉1 )

2
+ 𝑉𝑅𝑒

2 

Figure 7 – Current and Voltage Phase Diagram 
 
 
 
 
 
 
 
 
 
 

𝑋𝑒
′ = 𝑋𝑒 − 𝑋𝐺  

𝑠𝑖𝑛𝜃 =  
𝑅𝑒

√𝑅𝑒
2 + 𝑋𝑒

′2

, 𝑐𝑜𝑠𝜃 =  
𝑋𝑒′

√𝑅𝑒
2 + 𝑋𝑒

′2

  

Figure 8 – Impedance Phase Diagram 

Frequency Equation 

From the imaginary part of the current phase diagram (y-
axis) 
          𝐼1𝑐𝑜𝑠𝜃 =  𝐼𝑋 + 𝐼0𝑠𝑖𝑛𝜃                   (6) 
 
 

 

 
and from the equations derived from the equivalent circuit, 
the voltage and impedance phasor diagram equation (6) 
becomes: 

𝑋𝑒
′

𝑋𝐷

 ∙  𝐼𝑋 = 𝐼𝑋 + 𝐼𝑋  ∙  
𝑅𝑒

𝑅0

 

From         𝑋𝑒
′ = 𝑋𝑒 − 𝑋𝐺   

                𝑋𝑒 = 𝑋𝐷 (1 + 
𝑅𝑒

𝑅0
) + 𝑋𝐺 

Then  

𝑋𝑒 = 
1

𝜔𝐶𝐷
(1 + 

𝑅𝑒

𝑅0
) + 

1

𝜔𝐶𝐺
                          (7) 

Assuming 

(
𝑅1

𝑋0′
)
2

 ≪   (
𝑋𝑚

𝑋0′
− 1)

2

 𝑎𝑛𝑑 |
𝑅1

𝑋𝑚𝑋0′
|  ≪  |

𝑋𝑚

𝑋0′
− 1|  

Equation (2) becomes 

          𝑋𝑒(𝑓) =  
𝑋𝑚

1− 
𝑋𝑚
𝑋0′

                                            (7a) 

Where   𝑋0′ =  
1

𝜔𝐶0
′   and   𝐶0′ =  𝐶0 + 𝐶𝑠 

𝐶𝑆 is the circuit stray capacitance across the crystal. 

Let    𝑋𝐶𝐿
′ = 

1

𝜔𝐶𝐿
′ = 

1

𝜔𝐶𝐷
(1 + 

𝑅𝑒

𝑅0
) +

1

𝜔𝐶𝐺
       (7b)    

and                 𝐶𝐿
′ =  {

1

𝐶𝐷
(1 + 

𝑅𝑒

𝑅0
) + 

1

𝐶𝐺
}
−1

 

From eq. 7a and 7b one can obtain 

𝑋𝑚𝑋0′ =  𝑋𝐶𝐿
′  (𝑋0′ −  𝑋𝑚) 

𝑋𝑚 = 
𝑋𝐶𝐿

′𝑋0′

𝑋0′ +  𝑋𝐶𝐿
′
 

Then     

                    𝑋𝑚 = 
1

𝜔(𝐶0
′+ 𝐶𝐿

′)
                            (8) 

 
 
 
 

Voltage Current 
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From eq. (3) and (4) 

 

𝑋𝑚 =  𝜔𝐿1 − 
1

𝜔𝐶1
= 

1

𝜔𝐶1
{
(𝜔 −  𝜔𝑆)(𝜔 +  𝜔𝑆)

𝜔𝑆
2

}  

𝑋𝑚 = 
2(𝜔 − 𝜔𝑆)

𝜔2𝐶1
 

From equation (8) 

 

                                   2(𝜔− 𝜔𝑆)

𝜔2𝐶1
= 

1

𝜔(𝐶𝑂
′+ 𝐶𝐿

′)
  

𝑓 − 𝑓𝑆 = 
𝑓𝑆𝐶1

2(𝐶0′ +  𝐶𝐿
′)

 

                  𝑓 =  𝑓𝑆 {1 + 
𝐶1

2(𝐶0
′+ 𝐶𝐿

′)
}              (9) 

 
𝐶0

′ = 𝐶0  + 𝐶𝑠 
𝐶0 : Crystal Shunt Capacitance 
𝐶𝑠 : Total Stray Capacitance 
         Across the Crystal 
 

Then                𝑓 =  𝑓𝑆 {1 + 
𝐶1

2(𝐶0+ 𝐶𝐿)
}                     (10) 

  
Where                    𝐶𝐿 =  𝐶𝑆 + 𝐶𝐿

′ 
 
Equation 10 is the oscillating frequency of the crystal 
oscillator. 𝐶𝐿  is called the load capacitance of the 
oscillator. With a specified 𝐶𝐿 , the crystal manufacturer 
can then match the crystal to the customers circuit to 
obtain the desired oscillation frequency. From the 𝐶𝐿  

equation, the relationship between the other circuit 
parameters can be established (i.e. 𝐶𝐷, 𝐶𝐺, 𝑅0 and 𝐶𝑆) as 
it relates to the oscillation frequency of the crystal 
oscillator. 

In a typical CMOS oscillator 𝑅0 generally decreases as the 
supply voltage increases. This causes a decrease in load 
capacitance and an increase in the oscillation frequency. 
Figure 9 shows the effective load capacitance ( 𝐶𝐿 ) 
changes as the output resistance (𝑅0) 
changes. 
 
 
 

 
 
 
 

 
Figure 9 – Effective Load Capacitance (𝐶𝐿 ) vs. Output 
Resistance (𝑅0). 
 

Gain Equation 
From the real part of the current phase diagram  
(x-axis); 

 
         𝐼𝐷 =  𝐼0𝑐𝑜𝑠𝜃 + 𝐼1𝑠𝑖𝑛𝜃                          (11)                                    

and from the equation derived from the voltage, and 
impedance phase diagram equation becomes 
 

𝑔𝑚𝑋𝐺𝐼𝑋 = 
𝐼𝑋√𝑅𝑒

2 + 𝑋𝑒
′2

𝑅0

 ∙  
𝑋𝑒′

√𝑅𝑒
2 + 𝑋𝑒

′2

 

+ 
𝐼𝑋√𝑅𝑒

2 + 𝑋𝑒
′2

𝑋𝐷

 ∙  
𝑅𝑒

√𝑅𝑒
2 + 𝑋𝑒

′2

 

= 𝐼𝑋
𝑋𝑒′

𝑅0

+ 𝐼𝑋
𝑅𝑒

𝑋𝐷

 

𝑔𝑚𝑋𝐺 = 
𝑋𝑒′

𝑅0

+ 
𝑅𝑒

𝑋𝐷

 

 

𝑔𝑚 = 
𝑅𝑐

𝑋𝐷𝑋𝐺
+ 

𝑋𝑒
′

𝑅0𝑋𝐺
      and from    𝑋𝑒′ =  𝑋𝑒 − 𝑋𝐺  
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and eq. (7) 

 𝑔𝑚 = 
𝑅𝑒

𝑋𝐷𝑋𝐺
+ 

1

𝑅0𝑋𝐺
[𝑋𝐷 (1 + 

𝑅𝑒

𝑅0
 )] 

𝑔𝑚 = 4𝜋2𝑓2𝐶𝐷𝐶𝐺𝑅𝑒 + 
𝐶𝐺

𝐶𝐷𝑅0
(1 + 

𝑅𝑒

𝑅0
 )         (12) 

 

where                    𝑅𝑒  ≈  𝑅1 (1 + 
𝐶0

′

𝐶𝐿
′ )

2

. 
 
 
 
Equation (12) gives the minimum 𝑔𝑚  required for the 
oscillator to maintain oscillation. In practice, 5 to 10 times 
the calculated value is required to ensure fast start of 
oscillation. This equation also aids the designer in 
selecting the component values for 𝐶𝐷  and 𝐶𝐺 to match 
the CMOS amplifier and the crystal. 

It is important to note here that in most analyses; only 
the first term of equation (12) is used. The second term 
must be taken into account especially for low frequency 
application were the second term becomes larger than 
the first term as shown in Figure 10, when 𝑅0 is less than 
1.2 MΩ. 

 
Figure 10 – Comparison of minimum gm requirements 
vs. Amplifiers output resistance (𝑅0) 

Where 
𝑔𝑚1 = first term and 𝑔𝑚2 = 2nd term of equation (12). 
For 𝐶𝐷  = 20pF, 𝐶𝐺 = 30pF, 𝐶𝑆  = 1.1pF, 𝐶0 = 1.4pF, 
𝑅1  = 28KΩ, 𝑓0 = 32.768kHz and 𝐶𝐿 = 13pF. 
 
 
 
 
 

 
 
 

Using equation (12), Figures 11 and 12 show the change 
in the minimum 𝑔𝑚 requirements due to change in either 
𝐶𝐷  or 𝐶𝐺, while maintaining the other capacitor constant. 
For a 32.768kHz oscillator, as shown in Figure 11, 
trimming the output capacitor (𝐶𝐺 ) will produce more 
change in 𝑔𝑚 than the input capacitor (𝐶𝐷). As shown in 
Figure 12, a decrease in the amplifiers’ output resistance 
(𝑅0) increases the minimum 𝑔𝑚 requirement. 
 
 

 
 
Figure 11 - For 𝑅0 = 2.5MΩ  𝑔𝑚 comparison between 𝐶𝐷 
and 𝐶𝐺, where 𝐶𝑆  = 1.1pF, 𝐶0  = 1.4pF, 𝑅1 = 28KΩ,  
𝑓0 = 32.768kHz. 
 

 
Figure 12 - For 𝑅0  = 500kΩ  𝑔𝑚 comparison between 𝐶𝐷 
and 𝐶𝐺, where 𝐶𝑆 = 1.1pF, 𝐶0 = 1.4pF, 𝑅1 =2 8KΩ, 
𝑓0 = 32.768kHz. 
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Crystal Drive Current 
In order to analyse the current flowing through the 
crystal, the AC equivalent circuit from Figure 6 is redrawn 
to show the crystals electrical equivalent circuit as 
shown in Figure 13. The crystal drive current is 𝑖𝑏  , and 
𝑖𝑎 is the current through the shunt capacitance 𝐶0

′. 
 
Where;  𝑖𝑏⃗⃗⃗  =  𝐼𝑋⃗⃗  ⃗ −  𝑖𝑎⃗⃗  ⃗  and    |𝑖𝑎| =  

𝑉𝑒

𝑋0
 

 
 

 
Figure 13 - Oscillator AC equivalent circuit with the 
crystal electrical equivalent circuit. 
 
The crystal voltage, current and impedance phase 
relationships are shown in Figure 14 and 15; 

 

 
Figure 14 - Voltage and current phase relationship with 
the circuit equivalent 

 

 

 

 

 

 

 

 
 
 
 

CRYSTAL IMPEDANCE 
 

 
Figure 15 – Crystal impedance phase diagram 
 
 

From;   |𝑖𝑎| =  
𝑉𝑒

𝑋0
       and     𝑉𝑒 = 𝐼𝑋√(𝑅𝑒

2 + 𝑋𝑒
2) 

 

                             𝑖𝑎 =
𝐼𝑋√(𝑅𝑒

2+ 𝑋𝑒
2)

𝑋0
′                 (13) 

 
where                 𝑋0′ =  

1

𝜔(𝐶0
′.)

= 
1

𝜔(𝐶0
′.+ 𝐶𝑆)

 . 
 
From the current phase diagram of Figure 14 and the 
relationship   𝑖𝑏⃗⃗⃗  =  𝐼𝑋⃗⃗  ⃗ −  𝑖𝑎⃗⃗  ⃗   

𝑖𝑏 = √(𝐼𝑋 + 𝑖𝑎𝑐𝑜𝑠𝜙)2 + (𝑖𝑎𝑠𝑖𝑛𝜙)2  

and from the crystal impedance phase diagram Figure 15 
𝑠𝑖𝑛𝜙 = 

𝑅𝑒

√𝑅𝑒
2+ 𝑋𝑒

2
 ,          𝑐𝑜𝑠𝜙 =  

𝑋𝑒

√𝑅𝑒
2+ 𝑋𝑒

2
 

Substituting sin𝜙 and cos𝜙 and 𝑖𝑎 from equation (13) 

𝑖𝑏 = {𝐼𝑋
2 (1 + 

√𝑅𝑒
2 + 𝑋𝑒

2

𝑋0

 ∙  
𝑋𝑒

√𝑅𝑒
2 + 𝑋𝑒

2
)

2

 

+ 𝐼𝑋
2 (𝑅𝑒

2 + 𝑋𝑒
2)

𝑋0
2  ∙  

𝑅𝑒
2

𝑅𝑒
2 + 𝑋𝑒

2 
}

1
2

 

or                 𝑖𝑏 = 𝐼𝑋 {(1 + 
𝑋𝑒

𝑋0
)
2

+ (
𝑅𝑒

𝑋0
)
2

}

1

2
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Substituting                 |𝐼𝑋| =  

|𝑉|

√𝑅𝑒
2+ 𝑋𝑒

′2
 

 

         𝑖𝑏 = 
|𝑉|

√(𝑅𝑒
2+ 𝑋𝑒

′2)

√(1 + 
𝑋𝑒

𝑋0
)
2

+ (
𝑅𝑒

𝑋0
)
2

   (14) 

 
 
where    𝑋𝑒′ =  𝑋𝑒 − 𝑋𝐺  . 
 
From eq. (14) the crystal drive can be calculated from; 

 
𝑃 = 𝑖𝑏

2𝑅1     (in Watts) 
 
where 𝑅1 = crystalʼs motional resistance. 
 
 
 
Typical Effects Of RA In The Oscillator 
Circuit 
In many cases, a resistor 𝑅𝐴 is introduced between the 
amplifier output terminal and the crystal input terminal 
as shown in Figure 1. The use of 𝑅𝐴  will increase the 
frequency stability, since it provides a stabilizing effect by 
reducing the total percentage change in the amplifier 
output resistance 𝑅0  and also increases the effective 
output impedance by 𝑅𝐴 as shown on Figure 9.  𝑅𝐴 also 
stabilizes the output voltage of the oscillator and is used 
to reduce the drive level of the crystal. 

The complete AC equivalent circuit of Figure 1 is shown 
in Figure 16, where 𝑋𝑑  is the total output capacitance of 
the amplifier. 

Using the same analytical approach, the frequency, gain 
and crystal drive current equations with 𝑅𝐴 are derived. 
 

 
Figure 16 – Pierce oscillator AC equivalent circuit with 𝑅𝐴 
included. 
 
 
 

 
 
 
From the frequency equation (10); 
  

               𝑓 =  𝑓𝑆 {1 + 
𝐶1

2(𝐶0+ 𝐶𝐿)
}                           (10) 

 
where;                       𝐶𝐿 = 𝐶𝑆 + 𝐶𝐿

′ 

and; 

 1

𝐶𝐿
′ = 

1

𝐶𝐷(1+ 
𝑅𝐴
𝑅𝑂

)+ 𝐶𝐷

(1 + 
𝑅𝐴+ 𝑅𝑒

𝑅𝑂
− 𝑅𝐴𝑅𝑒𝜔

2𝐶𝑑𝐶𝐷) + 
1

𝐶𝐺
 

 
The gain equation is; 

𝑔𝑚  ≥ 4𝜋2𝑓2𝐶𝐺 [(𝐶𝐷 + 𝐶𝑑)𝑅𝑒 + (𝐶𝑑 + 
𝑅𝑒

𝑅0

𝐶𝑑) 𝑅𝐴] 

+ 
𝐶𝐺

𝐶𝐷 (1 + 
𝑅𝐴

𝑅0
) + 𝐶𝑑

(4𝜋2𝑓2𝐶𝑑𝐶𝐷𝑅𝐴 +
1

𝑅0

)(1 +
𝑅𝐴 + 𝑅𝑒

𝑅0

− 4𝜋2𝑓2𝐶𝑑𝐶𝐷𝑅𝐴𝑅𝑒) 

 

where   𝑅𝑒 ≈ 𝑅1 (1 + 
𝐶0

′

𝐶𝐿
′)

2

. 
 

 
The crystal drive current; 

𝑖𝑏 = 

|𝑉|√(1 + 
𝑋𝑒

𝑋0
)
2

+ (
𝑅𝑒

𝑋0
′)

2

√[𝑅𝑒 + 𝑅𝐴 (1 − 
𝑋𝑒

′

𝑋0
′)]

2

+ [𝑋𝑒
′ + 𝑅𝐴

𝑅𝑒

𝑋𝐷
]
2

 

 

where  𝑋𝑒
′ =  𝑋𝑒 − 𝑋𝐺   and  𝑅𝑒  ≈  𝑅1 (1 + 

𝐶0
′

𝐶𝐿
′)

2
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Summary 
By using the closed loop and phase diagram method, we 
were able to derive the frequency, gain and crystal drive 
current equations for a simple quartz crystal Pierce 
Oscillator. From the equations derived herein, it can be 
shown that the stray capacitance, minimum gain 
requirements and the output resistance of the amplifier 
must be carefully considered to obtain optimum 
oscillator performance. The minimum gain requirements 
should include consideration for the full range of 
operational temperature and voltage. The stray 
capacitance ( 𝐶𝑆 ) is especially critical due to negative 
feedback effects and will increase the minimum gain 
requirements of the oscillator [1]. As crystal 
manufacturers continue to miniaturize the crystal 
resonator, the oscillator designer must take into account 
the trade off in the crystal, amplifier and the circuit layout 
strays in order to select the appropriate component 
values to achieve proper crystal drive, start up, and a 
stable oscillation. 
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